Home / Fibre Composite and biomatrix genomics (FiCoGEN) – application to the ground transportation industry
Fibre Composite and biomatrix genomics (FiCoGEN) – application to the ground transportation industry
Generating solutions
Status
Competition
Genome Centre(s)
GE3LS
Project Leader(s)
- David Levin,
- University of Manitoba
Fiscal Year Project Launched
Project Description
Bast fibres such as hemp, linseed flax and kenaf are grown in North America for their oil seeds, used in foods, cosmetics and lubricants. The crops need minimal herbicides, pesticides or irrigation, making them both affordable and environmentally friendly – but until now, there has been little demand for the fibres left over after the oil seeds are extracted. Increasingly, however, these fibres are being used in industrial markets, providing a secondary income stream for farmers.
One of the most promising uses of biofibres is in combining them with a resin to make a biocomposite. These biocomposites are particularly valuable in the automotive industry, where their light weight, recyclability and sound insulation offer advantages over other materials. The market for biofibre composites is expected to grow by more than 10 per cent per year during 2014-19.
The University of Manitoba’s Dr. David Levin is working with the Composites Innovation Centre, a globally recognized centre of excellence specializing in the commercialization of biocomposite materials, to develop and test a prototype part from a parking enforcement vehicle using a novel biocomposite. The biocomposite uses flax fibres with traits enhanced for use in advanced composite materials (developed through previous Genome-Canada funded projects) and a binding resin/polymer produced in Dr. Levin’s laboratory from novel microbial strains. Westward Industries (WI), a Manitoba SME, will manufacture the vehicles. The new, lighter-weight vehicle with its lower carbon footprint will enable WI to triple annual sales to existing and new customers within three to four years. The composite tub is also estimated to decrease production costs of the parts it replaces by one third as well as increase workplace safety. Another Manitoba company, Minto Bioproducts, will be licensed to produce the polymer, bringing further economic benefits to the province and contributing to fulfilling Manitoba’s bioproducts strategy.